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We investigate the validity of a Markov approach for the motility of kinesin.
We show in detail how the various mechanochemical states and reaction rates
that are experimentally measured, can be used to create a Markov-chain model.
We compare the performance of this model to motility data and we find global
similarities in the load and ATP-concentration dependency of speed and mean
run length. We also discuss the relation between the experimentally found
stalling behavior and thermodynamic expectations. Finally, the Markov chain
modelling provides a way to calculate the mean entropy production and the
(power) efficiency.
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1. INTRODUCTION

Molecular motor is a common name for a variety of mechanisms whereby
on a molecular scale chemical energy is transformed into work. Most often
they consist of complex enzymes taking care of transport and motion in
living cells. The detailed dynamics of molecular motors has not been fully
understood and since many years the problem has also fascinated phys-
icists. To activate kinesin a strong nonequilibrium is maintained via a
high concentration of one of the reactants, ATP (adenosine triphosphate),
a common biological energy source. Its hydrolysis ATP ] ADP+Pi into
adenosine diphosphate and inorganic phosphate produces the energy for
the molecular motor. In the present paper biochemical data are used to
define mechanochemical states and to derive a Markov chain that models



the kinesin motor. The use of Markov chains in that context is not new;
a recent reference along that line is ref. 1. Here however, the Markov model
is not only a framework to fit the experimental results but the states and
transition rates for the Markov approximation are obtained in a step by
step process from combining biochemical knowledge with the standard
procedures of statistical physics. A similar ambition gave rise in ref. 2 to a
phenomenological model of dynamical equations for the mechanical cycle
in kinesin. The experimental input comes from refs. 3 and 4. We find that
the theoretical model behaves well with respect to most experimental
results. In particular we regard the stalling behavior and address the ques-
tion why the experimentally found stall force seems to be in discordance
with a thermodynamic argument that suggests a linear dependence of the
stall load on the chemical potential difference (i.e., the logarithm of the
ATP concentration). We also investigate for the first time the entropy
production and, related to that, the efficiency within such a detailed
Markov model. This is interesting in the light of recent theoretical studies
in nonequilibrium statistical mechanics where the very definition of entropy
production was discussed and where a symmetry was discovered in the
fluctuations of the entropy production rate, see, e.g., ref. 5 also for addi-
tional references. The experimental verification of such a symmetry for
small scale systems was recently reported in ref. 6 but no data are available
for molecular motors. The wider context of our investigations is the ther-
modynamics of small (sub)systems which is a rapidly growing arena for
tackling many problems in the life sciences and in manufacturing, see for
instance ref. 7.

1.1. Kinesin

The protein kinesin is called a motor enzyme or a molecular motor
because it is capable of linear transport along microtubules. A kinesin
molecule is about 110 nm long and 10 nm thick and consists of two heads
(the reactive core of the molecule) connected to two interwoven strands. On
the other end of these strands a variety of cargo may be carried (e.g.,
packages with chemical constituents or chromosomes). Experimentally, one
can in vitro apply a load to this end pulling it back. The two heads are the
motor domains that interact alternately with the microtubule to generate
movement. Studies (8, 9) show that the head in front tugs the head in the
back forward. This tugging, the so-called ‘‘power-stroke,’’ is initiated by
association of the head in front with an ATP-molecule. One imagines that
the motor contains a pre-strung spring that is unstrung as a result of the
binding of an ATP molecule; together with asymmetries in the binding to
the microtubule this drives the motor forward. In the next step the ATP is
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hydrolyzed into ADP and Pi. With this reaction the relevant head gains
energy (about 20 kT or 83 × 10−21 J) (10) that causes a return into its original
pre-strung state -after the release of the Pi and ADP. The number of ATP
molecules hydrolyzed per mechanical step remains 1/1 for a broad range of
loads. (11) In the mean time the head that was tugged forward binds to the
microtubule under dissociation of the ADP molecule that was still present
in its reaction core. The enzyme has now moved one step (of about 8.1 nm,
refs. 11 and 12). The other head can then release its Pi and becomes loosely
bound to the microtubule, thereby completing the reaction cycle. We will
come back to the details of this cycle in Section 3. It should be mentioned
that this alternating head-over-head motion of kinesin has been challenged
by the experiments of ref. 13.

1.2. Outline of the Paper

Chemical kinetic descriptions go back to some ten years ago, see, e.g.,
ref. 14 whereas ratchet models are more recent, see, e.g., refs. 15–17. While
these diffusion (or thermal) ratchets have certainly brought new ideas and
simple toy-models have demystified certain basic mechanisms, the corre-
spondence with the bio-chemical reality has not been impressive. Markov
chain modelling of kinesin motility with discrete states has appeared before
in, e.g., refs. 1, 18, and 19 with various choices for the states yielding
largely improved results. The experimental results of refs. 3 and 4 are very
well reproduced there by fitting the proposed theoretical models. In the
present paper we report further progress in mainly two directions: (1) to
motivate in detail the specifications of the Markov chain modelling where
the states and transitions are taken as closely as possible to the biochemical
facts; (2) to enlarge the domain of study to include also considerations on
entropy production.

We start in the next section with some preliminaries concerning setting
up the Markov model and its possible relevance to mechanochemical
evolutions. In Section 3 we describe our reduction of the complexity of the
kinesin motility to a Markov chain model. For this we need to identify the
relevant state space and we need to estimate the transition rates between
the possible states. These steps are highly non-trivial. On the one hand we
require a specific form for the rates based on a general statistical mechani-
cal principle; on the other hand there is the work of fitting and estimating
remaining parameters. Finally, in Section 4, we evaluate to what extent the
model reproduces known biological data, concentrating on aspects of
velocity, efficiency and entropy production and how they depend on ATP
concentration and load.
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2. MARKOV APPROXIMATION

2.1. Chemical Motor Model

The molecular motor kinesin works, through its mechanical couplings,
on the energy release in the dissociation of ATP. We make here some
abstraction of the actual processes to obtain a simple thermodynamic
scheme of a chemical motor.

Consider a system coupled to two particle reservoirs at chemical
potentials m1 and m2, everything immersed in a bath at constant tempera-
ture and pressure. In the system the particles undergo a reaction: the
simplest thing is to assume two energy levels e1 \ e2 with the particles from
the first particle reservoir entering the system at level e1. The reaction takes
them down to level e2 after which they leave to the second particle reser-
voir. The heat per particle that is released to the thermal reservoir is
denoted by Q and the work per particle that is done by the system is
denoted by W. The work consists in a conformational change of the system
(giving rise to motion). In the steady state, a particle current is maintained
and work is done while heat is exchanged with the environment.

By energy conservation (per particle):

W+Q+e2 − e1=0 (1)

For the (total) entropy production in the steady state, we must add the
changes of entropy in all the reservoirs and the second law gives

Q+(m1 − e1) − (m2 − e2) \ 0 (2)

As a consequence, by eliminating Q, the maximal work per particle that
can be done by our molecular motor is always bounded as

W [ m1 − m2 (3)

On the other hand, if Q \ 0 (heat released to the environment), then also

W [ e1 − e2 (4)

and Q [ 0 implies W \ e1 − e2. This is all what can be said thermodynami-
cally about the theoretical efficiency of our motor. Note that the above
thermodynamics is indifferent to the smallness of the system (such as a
molecular motor) as long as the reservoirs can be considered macroscopi-
cally large. For our molecular motor the particle reservoirs form the envi-
ronment with which the motor exchanges ATP and its constituents. The
state of the ath reservoir is a non-negative integer na and it gives the
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number of particles of species a present in the reservoir. This reservoir is
characterized by a chemical potential ma which is maintained throughout.
The heat bath or thermal reservoir fixes the inverse temperature b−1, cor-
responding, e.g., to body temperature, in which all other reservoirs and
system are immersed. Finally the motor can do work against some external
force (called load) by moving some distance related to conformational
changes.

Going to the full details of the biochemical reality is too much of a
task. A standard procedure is to invoke the so called Markov approxima-
tion. The evolution is given on the level of reduced states of a much more
complicated microscopic process.

2.2. States and Rates

The first introductions of Markov processes in the study of chemical
reactions can be found in refs. 20 and 21. In our case, not only pure
chemistry but also mechanics will specify the transition rates. We follow
here the line of ref. 5, Sections 5 and 6.2, specialized to a mechanochemical
system.

The state of the motor is characterized by both chemical and mechan-
ical aspects. For example the kinesin heads can be filled with ATP or their
constituents and strains may exist between the heads. In general the states
of the motor are characterized by numbers x=(x1,..., xm) giving each time
the number of particles of species a present, and by coordinates y=
(y1,..., ys) giving the mechanical description. In this way, i=(x, y) ¥ W is a
reduced state for the motor and W will denote the (finite) state space.

We want to define a Markov process for the (x, y). The dynamics is as
follows. There are exchanges of particles between the particle reservoirs
and the subsystem. Secondly, there are (chemical) reactions within the
subsystem by which the numbers x change (but not the na) and by which
energy is released to the thermal reservoir. This also involves the substrate
(microtubule) and the attachment of the motor to katalytic sites. Thirdly,
there are the conformational transitions changing the (collective) coordi-
nates y. This can involve internal rearrangements by which again energy is
exchanged with the heat bath but also motion (the power stroke) against
some external force. For all these transitions the transition rates are
determined by the total change of entropy. For example, in equilibrium, for
a chemical reaction by which x Q xŒ at fixed y by which energy is exchan-
ged with the heat bath, the rates satisfy the detailed balance condition

r0(x Q xŒ, y)
r0(xŒ Q x, y)

=exp[ − bDG] (5)
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with DG the Gibbs free energy. The concentrations of the various reactants
(or, the equilibrium chemical potentials) are then obtained by differentiat-
ing G with respect to the x. Stationary nonequilibrium is installed when the
environment maintains a different chemical potential; the concentration of
ATP can be much larger than its equilibrium value. For a particle exchange
between the motor and the environment the transition rates will pick up a
dependence on, e.g., the ATP concentration.

We conclude that the nonequilibrium transition rates are obtained by
associating with each state i ¥ W an energy Gi and we assume the transition-
rates r(i, j) and r(j, i) between two such states i and j to satisfy:

r(i, j)
r(j, i)

=F(i, j) eb[Gi − Gj] (6)

where b is the inverse temperature and F(i, j)=1/F(j, i) will break the
detailed balance condition as a consequence of the driving mechanism via
the gradient in chemical potential, possibly counteracted by some external
load.

We can solve (6) by the choice

r(i, j)=
wijebmij

1+eb[Flij − Uij] (7)

with mij the chemical potential of some substance a involved in the transi-
tion from state i to state j. The difference in energy is in the exponential,
Flij − Uij with Uij=Gi − Gj, the free energy difference between state i and
state j without load. Flij=FF · lFij is the product of an external load acting
from state j to state i over ‘‘distance’’ lFij=−lFji. Since in the motility cycle
the whole configuration has shifted over the stepping distance ( % 8 nm) we
demand that ; cycle lij=l.

Expression (7) is further parameterized by wij=wji. We call wij the
characteristic frequency of transition (i, j); it can possibly be seen as a
measure of the friction of the transition and may still depend on the
applied load F due to some conformational change inside the kinesin head.
By the symmetry i Y j, it cannot have a definite influence on the nonequi-
librium features of the motion. Comparing (7) with (6) we have

F(i, j)=e−b[Flij − mij+mji] (8)

and (7) solves (5) in equilibrium.
We will take the wij constant (not dependent on the load) so that the

main implication of formula (7) is that the effect of the load on the rates
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is bounded by some rate-limiting process (as is the case for the whole
model with respect to the ATP concentration); hence the choice of a
Michaelis–Menten form in (7) seems most natural. This differs from the
choices made in, e.g., refs. 1 and 18 where the rates also solve (6) but are
not bounded as function of the load.

In Section 3 we will give the concrete realization of (7).

2.3. Entropy Production

The probability rt(i) to find the system in state i at time t satisfies the
Master equation:

drt(i)
dt

= C
j ¥ W

[r(j, i) rt(j) − r(i, j) rt(i)] (9)

We are interested in the stationary process; that is when rt(i)=r(i) is no
longer varying with time. The model describes a nonequilibrium steady
state when (9) vanishes without each term in the sum being zero. We can
associate a mean entropy production rate (MEP) to it, see refs. 22 and 23),

MEP=C
i, j

r(i) r(i, j) log
r(i, j)
r(j, i)

(10)

MEP is always non-negative and it is zero if and only if r(i) r(i, j)=
r(j) r(j, i) (detailed balance).

The ‘‘current’’ Jij(t1, t2) over a time-interval [t1, t2] between any two
different states i and j is the random variable

Jij(t1, t2)=Nij(t1, t2) − Nji(t1, t2) (11)

with Nij(t1, t2) the number of transitions in [t1, t2] from state i to state j.
When sampled over a large time-interval, we get its mean, the stationary
current

Jij=r(i) r(i, j) − r(j) r(j, i)= lim
t ‘ +.

Jij(0, t)
t

(12)

and another way to write the entropy production rate:

MEP=1
2 C

i, j
JijAij (13)

A Markov Model for Kinesin 335



with Aij=log(r(i, j)/r(j, i)) the thermodynamic force by which the system
is driven away from equilibrium. The basic relations are then

C
j

Jij=0, C
i, j

JijAij \ 0 (14)

and similarly to (1)–(4), they ought to decide the performance of the
Markovian motor. Most interesting are the currents associated with the
power stroke because from these we obtain the velocity and the possible
dependence on load and ATP concentration. In the same manner, since
motor functioning can hardly be imagined without a cyclic component, we
are concerned with Markov chains that are at least partially cyclic. We call
a Markov chain monocyclic if we can write W={1, 2,..., n} and r(i, j)=0
unless i=j ± 1 (with the convention that n+1 — 1). For a monocyclic
Markov chain the currents satisfy Jij=J=−Jji when j=i+1 and are zero
otherwise. Using (7) in (13), it is then easy to verify that the mean entropy
production rate takes the explicit form

MEP=Jb[Dm − Fl] (15)

where Dm=;n
i=1 [mi, i+1 − mi+1, i] and l=;n

i=1 li, i+1. We have taken the
positive direction of the current opposite to that of the load. The power
stroke is effectively generating motion (in the right direction) as long as the
load F [ Dm/l, or, Dm/l is the maximal force that can be delivered by the
motor for given nonequilibrium concentrations, see (3). It is therefore
natural to say that the stall force Fstall, the load at which the mean entropy
production vanishes, satisfies

Fstall=
Dm

l
. (16)

While this monocyclic (sometimes also called linear) architecture most
conveniently expresses the motion of a motor, in reality, various rate limit-
ing steps can break the exact order of steps. Nevertheless formulae (15) and
(16) remain valid if the transition rates satisfy a local detailed balance
equation as in (6) with no bias or driving over internal loops except over
the main motility cycle where the current is J. Consider for example the
Markov chain as depicted in Fig. 2 for n=6 where, in parallel, 3 linear
chains connect the states 3 and 5. Again, using stationarity, if we assume
that the concentration differences satisfy m36 − m63+m65 − m56=m34 − m43+
m45 − m54 and the distances satisfy l34+l45=l36+l65 as would be the case
without preferred direction in the subcycle of states 3, 4, 5, 6, formula (15)
remains unchanged for J=J12. The inclusion of parallel paths or
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loops (as they will arise naturally from the biochemical considerations in
the next section) replaces the introduction of (non-exponential) waiting
times that have been used as extra fitting resources in the linear chains of
ref. 1.

3. THE MODEL

Our aim is not just to find a model that fits the experimental results,
but rather to continue the discussion of Section 2.2 to derive and to justify
the details of a Markov chain model based on both qualitative and quanti-
tative information about the transition rates. Only a posteriori will we
check whether the model performs well in reproducing the experimental
data. Nevertheless, some amount of fitting will be needed and this will be
addressed in Section 3.3.

3.1. Reduction of States

Experiments (24) show that the Pi releases from a kinesin head prior to
ADP; for one kinesin-head this leaves us with the following states: the
empty head referred to as the K-state; one filled with ATP, the T-state; one
filled with ADP+Pi, the P-state; and one with ADP only which is referred
to as the D-state. In principle a kinesin head could in all cases be either or
not bound to the microtubule. Chemical studies (24) however have shown
that a kinesin head associated with ADP is unlikely to be bound to a
microtubule while in the other states the kinesin head is likely to be bound
to a microtubule. Therefore we take only four states per head into account;
for two heads there are sixteen possible states for kinesin. These states are
schematically depicted in Fig. 1 (with periodic boundary conditions), where
the arrows indicate the direction of (strong) preference for the various
transitions when a nonzero chemical potential difference is driving the
system. All states are referred to by two capitals, the first representing the
front head, the second representing the rear head.

This set of sixteen states can be further reduced on the basis of some
assumptions and approximations, whereby we leave out abnormalities that
arise only under extreme conditions.

We first consider the path that is generally followed by kinesin: start-
ing from the KD-state, one head is loose and the other bound to the
microtubule; by binding ATP the motor goes to the TD-state; then kinesin
undergoes a transformation because of binding to the ATP-molecule, leading
to the power stroke and thus to the DT-state; as a result the ATP
hydrolyzes while the other head rebinds to the microtubule, thereby releas-
ing its ADP. Since the order of these two processes is not set, kinesin can
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: Kinesin head           : ATP           : ADP + P           : ADP

DK

KK

TK

PK

5

63

4

DPDT

KPKT

TPTT

PPPT

DD

6

1

2

KD

TD

PD

Fig. 1. Scheme of chemical states for kinesin. The arrows indicate the transitions between
the states; the large dotted arrow indicates the power stroke; the grey arrows indicate the
transitions that are disregarded; the grey areas indicate states that are left out of the model.

go to the KP-state via two possible ways: either through the KT-state or
through the DP-state. After this so-called rate limiting step takes place, the
Pi produced in hydrolysis of the ATP is released from the front head, and
kinesin returns to the KD-state, the state we started with.

Sometimes kinesin may dissociate from the microtubule completely.
Here we assume that this is always the case when kinesin is in the DD-
state. This could happen when the head in front cannot bind to the micro-
tubule in time and the Pi of the other head dissociates. In this model
however we would like to compare to measurements for an attached motor,
so we leave out this DD-state and its transitions.2

2 For considering the expected turnover rates at various microtubule concentrations, one can
calculate the rate of detachment from the mean distance travelled as was measured by ref. 4
(see Section 4.5 for details) and the rate of re-attachment was measured by ref. 14.

Fluorescence experiments (14) show that once a free kinesin molecule (in
the DD-state) binds to a microtubule, it releases one of its ADP’s quite
quickly, but at low ATP concentrations it takes much longer to release the
second ADP molecule. Because ADP release is associated with the binding
of a kinesin head to the microtubule, it is clear that binding of ATP to one
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head is needed to put the other in position to bind to the microtubule. This
is confirmed by other experiments (8, 9) that show that the binding of ATP to
kinesin is associated with a deformation of the head leading to a tugging
force on the rear head. Altogether it seems realistic to assume that at
reasonable ATP concentrations ( > 1 mM) it is unfavorable for the kinesin
to release ADP from the rear head. The states associated with the release of
ADP from the rear head are therefore left out of the model (the second
column from the left in the scheme with four states in grey).3

3 These states occur if ATP concentrations get too low for motility and would effectively be a
waiting state with double binding force (KK-state) and some ‘‘get-back-to-mobile’’ states if
ATP concentrations become sufficiently high again; it could still play a role at high loads.

Four more states can be discarded on basis of a similar principle.
Because the binding of ATP (to the front head because of the former con-
sideration) results in a tugging force on the rear head, it is energetically
unfavorable (thus improbable) for ATP to bind to kinesin before the rear
head is detached (in the KD-state). Therefore the transitions from the KT-
and KP-state to the TT- and TP-state respectively are disregarded, thereby
logically discarding the four states in the lower-right corner of the scheme.

Finally we assume that ATP can only hydrolyze once the deformation
of the head associated with its binding has taken place. This assumption
effectively discards the transition from the TD-state to the PD-state.

A single state or group of states that does not take part in the motility
cycle but has only one connection to it, may act as a ‘‘waiting’’ state,
lowering the effective rates to leave the state to which it is attached, see the
appendix for details. The PD-state has such properties with respect to
the DP-state in the motility cycle, whence we apply this principle there,
combining those two states into one.

We now have reduced our model to six states with only seven transi-
tions, as depicted in Fig. 2. There are two main cycles in the model. One
runs through the KT-state, the other through the DP-state. Four transi-
tions depend on load, one on the ATP concentration, one on the ADP
concentration and one on the concentration of Pi.

3.2. The Rates of the Model

Because on a microscopic level every step should in principle be
reversible, every rate in one direction is accompanied by a non-zero rate for
the reversed transition: in reality chemical potential differences or loads are
not infinite. For the rest, we take the rates of the form (7) satisfying (6) and
giving a physical parametrization.
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6 3 2

15 4

Fig. 2. Scheme of Markov states for our model of kinesin. The arrows indicate the typical
direction of the process; the numbers refer to the numbers in the lower right corner of the
chemical states in Fig. 1.

As the motor goes through a cyclic process, it eventually returns to
each state. Since each state has an associated internal energy, the internal
energy difference over every cycle in the model should be zero: U12+U23+
U34+U45+U51=0, U34+U45=U36+U65. Note that this is always true due
to the definition of Uij=Gi − Gj. In fact here we assume that even U45=U36

since one expects the associated reactions to be (almost) independent of the
configuration of the other head.

Similarly the motor is displaced by distance l through a motility cycle.
If we assume that transitions involving a reaction from ATP to ADP+Pi

or dissociation of Pi do not depend on load we get that l12+l23+l34=l

and l65=l34. So every one of these transitions account for a bit of move-
ment.

For practical purposes we express the rates belonging to transition
(i, j) in terms of concentration of substance a rather than in chemical
potentials, writing exp(bma)=Ka[a]. In what follows the energies are
expressed in units where b=1.

The transition from the 1- to the 2-state depends linearly on the ATP
concentration, with a coefficient w12KATP that was determined to lie
between 1.2 − 2.8 mM−1s−1. (14) The increase in the Michealis–Menten con-
stant with load (4, 3) together with the fact that ATP-binding results in a
power-stroke, (9) leads us to believe that this transition is also force depen-
dent at some characteristic length l12 and against some internal energy
difference U12:

r(1, 2)=
w12KATP[ATP]

1+exp[Fl12 − U12]
(17)
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where we use the KATP, l12 and U12 as fitting parameters. For the transition
rate in the opposite direction r(2, 1) we use r(2, 1)(F=0)=70 s−1 (14) to
solve w12.

The power stroke, where the system goes from the 2-state to the 3-state,
is of course also load dependent. We assume that the associated internal
energy difference U23 lies (well) below 20 kT keeping in mind as a bound
that the hydrolysis of one ATP molecule releases a free energy of about 20 kT
at room temperature.

For rate r(2, 3) we estimate w23=104 s−1; l23 and U23 need to be fitted.
Transition (3, 4) may involve some load dependence and we take

r(3, 4)(F=0)=306 s−1 to fit w34. In this transition ADP is released from
the binding head, so the reverse rate depends on the concentration of ADP:

r(4, 3)=KADP[ADP] exp[Fl34+U34] r(3, 4) (18)

Transition (4, 5) is simply dissociation of ATP into ADP+Pi, and no
dependence on load is expected here. Hence we may simply write r(4, 5)=w45

and r(5, 4)=w45 exp[ − U45], where we choose w45=104. Analogously we
write r(5, 1)=w51 and r(1, 5)=KP[Pi] exp[ − U51] for the rate-limiting
transition, and keep in mind that r(5, 1) should be of the order of 100 s−1.4

4 From chemical analysis it is estimated to be only about half of that; (14) optical trap experi-
ments measure however speeds up to 813 nm/s which would be equivalent to a rate of at
least 100 s−1.

The transitions out of state 6 are special because of the aforemen-
tioned reduction of states that has regrouped the DP- and PD-states, see
the end of 3.1 and the appendix for details . For the rest, the transitions
(3, 6) and (6, 5) are equivalent with transitions (4, 5) and (3, 4), respec-
tively. Looking back at the reduction of states at the end of the appendix,
we thus write the rates to leave state 6 as

r(6, 3)=
r(5, 4)

1+exp[F(l12+l23) − U23+U45]
(19)

r(6, 5)=
r(3, 4)

1+exp[F(l12+l23) − U23+U45]
(20)

Here l12+l23 is obviously the distance the head has to move to be in the
rearward position, and U23 − U45 is the energy that is gained by restringing
the lever that is associated with the power stroke in the fixed head.

From equilibrium thermodynamics,

eb Dm=eb DG [ATP]
[ADP][P]

, (21)
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Table I. Relevant Parameters for the Rates Given in Section 3.2 Under Minimiza-

tion of l12 (Fit 1)

(i, j) wij (s−1) lij (nm) Uij (kT) a Ka (M−1)

(1, 2) 694 2.55 2.19 ATP 2020
(2, 3) 104 5.14 7.91 – –
(3, 4) 104 0.40 − 3.45 ADPa 2020
(4, 5) 104 0 − 1.0 – –
(5, 1) 601 0 − 5.64 Pi

a 2.1 · 10−9

(3, 6) 104 0 − 1.0 – –
(6, 5) 104 0.40 − 3.45 ADPa 2020

a Marks the substances that are released in a progressive cycle; T=300 K.

which implies

KATP

KADPKP
=eb DG (22)

where we take DG=20kT. (10) The exact value of DG is not very important
for the quality of the results but it plays a role in the thermodynamic pre-
diction of the stall force. We are interested in the regime where the concen-
trations of ADP and Pi are small. We choose [ADP]=[Pi]=1 nM and the
ATP concentration, together with the load, is the major variable. We also
take KADP=KATP or, from (22), KP=exp(−b DG). We checked that there
was no qualitative dependence of the fitting on small changes in these
choices. A summary of the resulting rates is given in Tables I and II.

Table II. Relevant Parameters for the Rates Given in Section 3.2 Under Minimiza-

tion of w51 (Fit 2)

(i, j) wij (s−1) lij (nm) Uij (kT) a Ka (M−1)

(1, 2) 2500 3.85 3.51 ATP 500
(2, 3) 104 3.74 12.0 – –
(3, 4) 104 0.51 − 3.45 ADPa 500
(4, 5) 104 0 1.95 – –
(5, 1) 187 0 − 14.0 Pi

a 2.1 · 10−9

(3, 6) 104 0 1.95 – –
(6, 5) 104 0.51 − 3.45 ADPa 500

a Marks the substances that are released in a progressive cycle; T=300 K.
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3.3. Fitting of the Model

As is clear from the previous section, the states of the Markov chains
have a fixed interpretation and most rates are at least partially determined
by the biochemical data but some parameters remain free. The data that we
use to fit to, are summarized in Fig. 2 of ref. 3, This fitting consists of the
maximal velocity and Michealis–Menten constant at three different forces.
That is the main additional input to our model. A fourth measuring
point comes from their measurement of the stall force at a cut-off time of
2 seconds: the stall force seems to saturate -at infinite ATP concentrations-
to about 8.5 pN. It implies that the velocity cannot exceed 1

2 l s−1. We use
vmax(F=8.5 pN)=1

2 l s−1 as another fitting point.5 As a consequence we

5 This will be taken up further in Section 4.2; taking values lower than 1
2 l increases the fitting

error.

choose not to force the velocity to become strictly zero at a load of about
6–8 pN.

We found it most convenient to start by fitting to the maximal veloci-
ties associated with saturating ATP concentrations, since then transition
1 Q 2 and thus its three parameters KATP, l12 and U12 play no role. Next,
we fit the remaining parameters to the values of the Michaelis–Menten
constant. Two basic fittings have been obtained, one under minimization of
l12 (fit 1) and one under minimization of w51 (fit 2) without allowing U23 to
become bigger than 12 kT.6 Experimentally one could distinguish between

6 Allowing U23 to increase even further leads to an unrealistically high free energy difference
for transition (5, 1) while on the other hand the results of the next section would remain the
same.

these extremes by seeing whether there is a maximum in the Michaelis–
Menten constant or not beyond 5 pN (see Fig. 9).

The results of these fittings can be seen in Table I and II. Under
minimization of l12 (fit 1) w51 becomes fairly big compared to earlier esti-
mates; also U23 seems to be rather small in this case and also KATP seems
big. On the other hand it may seem strange that for fit 2 l12 % 1

2 l. A priori
we see no good reason to choose either one of these fittings as ‘‘the right
one.’’ We will continue to refer to them as fit 1 versus fit 2 and they can be
considered as two different numerical solutions of the same model.

4. RESULTS

4.1. Velocity

The average velocity of kinesin can be measured as a function of ATP
concentration and external load. It is the average distance travelled by the
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Fig. 3. Logarithmic plot of the velocity as a function of ATP concentration for various
loads (from top to bottom 1 pN, 3 pN, and 5 pN).

motor per unit time. In our Markov chain, it is given by the rate at which
the system runs the basic cycle 1 Q 2 Q 3 Q 5 Q 1. Since each cycle is asso-
ciated with a fixed length l, we take OvP=lJ as velocity in our model,
with

J=J51 — r(5, 1) r(5) − r(1, 5) r(1) (23)

the average (particle) current in the stationary Markov chain between
states 5 and 1.

Running our Markov chain gives rise to Figs. 3 and 4 for the behavior
of velocity as a function of ATP concentration and load respectively. The

Fig. 4. Normalized plot of the velocity as a function of load for ATP concentrations of
2 mM (top, n) and 5 mM (bottom, +). The points measured by ref. 3 are indicated in the
figure.
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relative error with respect to the fitting of ref. 3 remains within 3.5%. For
very small loads at [ATP] concentration of 5 mM the agreement is not so
good as the fitting obtained in ref. 1. On the other side, for large loads (and
this is relevant for the stalling behavior), in contrast with, e.g., ref. 1, our
theoretical velocity curve does not vanish at around 7 pN; it decays more
slowly and becomes zero when Fl=Dm as corresponds to the thermody-
namics of Section 2.1 and Eq. (16). Strictly speaking however, the curve
remains in full agreement with the experimental data of ref. 3. Moreover,
whereas some theories of kinesin function like (1) even predict that the
velocity becomes negative for high loads, the experimental findings of ref.
25 tell that kinesin does not walk back under loads of up to 13 pN.

Turning to analytical results, one expects the velocity OvP=lJ to
qualitatively follow Michaelis–Menten kinetics, that is

OvP % vMM=lJmax
[ATP]

[ATP]+Km
(24)

where Jmax is the maximal current (at saturating ATP concentration) and
Km is called the Michaelis–Menten constant, both dependent on the exter-
nal load. (3) Experimentally (and also in our numerical results), this law is
obeyed from near zero loads to at least 5.5 pN with Km increasing with the
load. If, in our model, we put [Pi]=0 (which really corresponds to the
case where [Pi] ° [ATP]), then r(1, 5) vanishes. We can then calculate
the current J with definition (23) and we indeed find the Michaelis–Menten
form (24). For this calculation, it suffices to check that the stationary
distribution r has a very specific form:

r(1)=
Km

[ATP]+Km
; r(i)=

r̃(i)[ATP]
[ATP]+Km

, (25)

where r̃(i) are positive numbers that do not depend on the ATP concen-
tration and are given in the appendix. Of course, in reality, [Pi] ] 0 and
[ADP] ] 0 and this is important when considering small ATP concentra-
tions (near equilibrium situation) as it then happens that the current
becomes neagtive for large enough loads. This is not visible in the Michaelis–
Menten form (24) and we suggest therefore the modification

J=
Jmax[ATP]+JminKm

[ATP]+Km
(26)
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Fig. 5. The mean run length as a function of ATP concentration at various loads, from top
to bottom at 1.1 pN (n), 3.6 pN (+) and 5.6 pN (j); the lines are fittings (see Section 4.5
and Table III), the points are measurements of ref. 4.

where Jmin=lim[ATP] a 0 J as we verify that Km % ; i r̃(i) r(i, 1)[ATP]/
r(1, 2) does not depend on the ATP concentration. This relation (26) will
also be important for the stalling behavior of the motor (when J % 0).

4.2. Stalling the Motor

The external load that is applied to kinesin reaches a certain maximum
at the moment kinesin stalls. This maximum force has been referred to as
the ‘‘stall force’’ Fstall. It has been almost universally recognized that this
stall force varies around 5–8 pN. Moreover, the measurements of ref. 3
suggest that the stall force is concave as function of the chemical potential
difference. All this looks like being in contradiction with the thermody-
namics of Section 2.3 where, around (15), we found from considerations on

Fig. 6. The mean run length as a function of load at high ATP concentrations (n=2 mM)
and low ATP concentrations (+=5 mM); the lines are fittings (see Section 4.5 and Table III),
the points are measurements of ref. 4.
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Fig. 7. The experimental stall force measured by ref. 4 (+) compared with the line of equal
velocity for fit 1; the solution of OvP=1

2 l. As can be seen this line at least roughly represents
the measurements.

the mean entropy production that lFst=Dm. This contradiction can be
removed by being more clear about the nature of stalling, as we will now
explain.

In order to measure the stall force in an experimental set-up, one has
to choose a certain finite cut-off time y during which the motor should not
move; from that time the motor is considered to have stalled.7 Doing mea-

7 There is an experimental consideration to be made for the statistical evaluation of the stall
force: in a considerable fraction of runs, for not too small loads, the motor dissociates before
stalling which could lead to a biased sampling at high loads, see also ref. 25.

surements on the stall force using such a cut-off time y as a function of the
parameters comes down to an integration over the variable velocity v(t)
seeing that it remains within some error interval, say >y

0 v(t) dt < d. The
apparent contradiction above disappears if we assume that the stalling
condition is equivalent with solving the equation v([ATP], F)=l/y for
reasonable y. After all, experimentally the stall regime is identified as a
horizontal plateau in displacement records and the plateau duration is not
infinite. In Fig. 7 we have connected the points where the force and the
concentration give the velocity OvP=1

2 l for fit 1; this should be compared
with Fig. 3b in ref. 3. As is clear, this profile resembles the experimental
stall force, in support of our assumption.

Because we have the velocity rather explicitly in terms of the ATP
concentration, (26), we solve the equation v([ATP], F)=l/y in terms of
[ATP], obtaining the stall concentration

[ATP]st (y)=
Km(1

y − Jmin)
Jmax − 1

y

(27)
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Fig. 8. Logarithmic plot of − Jmin. The two lines indicate the direct calculation of our model
using two different fittings (‘‘ · · · ’’ for fit 1, ‘‘ − · − ’’ for fit 2), the three points to the left are
calculations using the parameters of the Michaelis–Menten fit of ref. 3 (i’s using (28)) the
points to the right are calculations using their measurement of the stall load (n’s and +’s for
fit 1 and 2 respectively using (27) with y=2 s).

Hence, for some finite load and some finite y the stall concentration can be
infinite. This is again consistent with the findings of ref. 3, their Fig. 3b.

We can also use the Eq. (27) to obtain numerically the load depen-
dence of Jmin and Km. In Fig. 8 the results can be seen on the measurements
of ref. 3. For small loads fit 1 follows the experimental values perfectly and
for larger loads fit 1 seems to have better characteristics compared to fit 2
as well, even though many of the experimental points are scattered towards
lower values. Of course, also Km is load dependent. In Fig. 9 we see the

Fig. 9. The two lines indicate the direct calculations of Km from our model using two dif-
ferent fittings (‘‘ · · · ’’ for fit 1, ‘‘ − · − ’’ for fit 2), the three points to the left are calculations
using the parameters of the Michaelis–Menten fit of ref. 3 (i’s), the points on the right are
calculations using their measurement of the stall load ( p ’s and +’s for fit 1 and 2 respec-
tively). The best fitting would seem to be fit 1 with respect to the characteristics. Unfortuna-
tely the points on the right seem too widely scattered to draw strong conclusions.
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results of calculating Km from the measurements of the stall load of ref. 3.
Km is certainly of the right order, but the points are rather wide-spread.
When compared with our model, fit 1 seems to do better than fit 2 here just
as well.

Equation (27) also gives a new interpretation to the term Jmin that first
appeared in (26): it is proportional to the finite stall concentration when
stalling is defined with infinite waiting time y (plateau duration),

lim
y Q .

[ATP]st (y)=[ATP]st S Jmin=−
Jmax

Km
[ATP]st (28)

4.3. Entropy Production

As can be seen from the general discussion around (2), the total steady
state entropy production Q+(m1 − e1) − (m2 − e2) \ 0 consists of two con-
tributions: there is the heat Q given to the body and there is the deteriora-
tion of the energy source (hydrolysis of ATP). For fixed concentrations, the
waste (even though pleasant) is just in the heating.

It is quite straightforward to calculate the mean entropy production
for our model with Eq. (10). As one expects, the outcome increases with
ATP concentration and it decreases with load. Increasing the load decrea-
ses the velocity but increases the work per particle W=Fl. Since energy
conservation (1) implies that for greater work W, less heat per particle Q
can be dissipated and hence the heat current QJ decreases, it is indeed as
expected that the entropy production rate decreases with increasing load.

It is interesting to calculate the mean entropy produced per ATP
molecule. To do so we divide the mean entropy production by the ATP con-
sumption, which is the same as the current J (26) since only one ATP mol-
ecule is used per cycle. We have numerically calculated that the entropy
production per cycle is linear with log[ATP] and with load, the slopes are
1 and − bl respectively. This is in full correspondence with (2). In case
the motor does no work, W=Fl=0, we expect b Dm=MEP/J; b Dm=
b DG+log[ATP] − log[ADP][Pi] % 55 for [ATP]=2 mM. We find that
fit 1 and fit 2 both give results in full correspondence with theory.

4.4. Efficiency

Estimating efficiencies for molecular motors is still an issue of debate.
In ref. 26 it is argued that one should not only consider the power for
motion but also to do this with a given average velocity, thereby, e.g.,
taking into account that the motor moves in a viscous medium. As it is the
case even for chemical plants, the proper definition of efficiency surely
depends on what you wish to keep constant and what is considered as
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Fig. 10. Semi-logarithmic plot of g as a function of [ATP] for F=3.2 ( · · · ) and F=4.5 pN
( − · − ), belonging to the maxima of the curves in Fig. 11. Obviously the maximal efficiency
increases with [ATP], but for extremely large [ATP] it decreases again (not shown in plot).

waste. Here we take the conventional set-up that centers around the ques-
tion what force is exerted by a molecular motor to keep moving, see ref. 18.

An efficiency usually counts the actual work performed by the motor
divided by the maximal possible work (input energy). We will speak in
terms of power output versus power input. The numerator, the power
output, is easy: it is just JFl. For the denominator, which is always more
problematic, we can follow the standard thermodynamics that we had
before. From (3), we have the bound on the work W [ m1 − m2 so that
the maximal input power is Dm multiplied with the maximum current
J0=J(F=0). The denominator is thus taken equal to J0Dm, the chemical
potential current without load, and does not depend on the load. We thus
have as ‘‘efficiency:’’

g=
JFl

J0 Dm
(29)

The behavior of this ‘‘efficiency’’ for our model can be seen in Figs. 10 and 11.
As expected it has a maximum as a function of load and it increases with
ATP concentration in the experimental regime. There seems to be a global
maximum of about 32% at an ATP concentration of approximately
9 · 10−2 M and a load of about 4.6 pN.

4.5. Mean Run Length

The processivity of kinesin along the microtubular track refers to the
attachment of the motor. The average distance travelled before detachment
of the motor from the microtubule OLP was experimentally measured by
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Fig. 11. Plot of g as a function of load for [ATP]=10−6 ( · · · ) and [ATP]=2 · 10−3 M
( − · − ). This efficiency clearly has a maximum at some specific load that increases with
[ATP] from approximately 3.2 pN for [ATP]=10−6 to about 4.5 pN for [ATP]=2 · 10−3 M.

ref. 4. It depends on the average velocity OvP and the rate of detachment
rdet in the following way:

OLP=
OvP
rdet

(30)

The velocity has been treated in Section 4.1, remains the rate of detach-
ment.

The rate of detachment for our model is the sum over all possible ways
to detach, summing over all rates of detachment from a specific state,
weighted with the probability to be in that state:

rdet=C
i

r(i) rdet(i) (31)

A first natural candidate where the detachment rate is non-zero is the PD-
state. The PD-state was taken in our model as part of the 6 state and the
corresponding rate of detachment would be according to Eqs. (7), (19), and
(20) and the considerations made at the end of the appendix:

r(PD) rdet(PD)=
r(6)

1+eU23 − U45 − F(l12+l23)

w6, det

1+eU6, det − Fl6, det
(32)

where the first part determines the PD-state part of the probability distri-
bution of state 6 and the second part is the actual detachment rate con-
taining some fitting parameters w6, det, U6, det, and l6, det. Moreover, the
experimental data indicate that the average distance travelled decreases
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Table III. Fitting Parameters for the Detachment Rates

Given in Section 4.5

(i, j) wij (s−1) lij (nm) Uij (kT)

(1, det) 2.4 · 10−2 4.1 5.0
(6, det) 4.8 · 104 6.9 0.7

with decreasing ATP concentrations, (4) suggesting that detachment may
occur in the KD-state (state 1) prior to binding with an ATP molecule.8

8 That makes sense since it is the first state in our model that is reached when a kinesin mole-
cule binds to the microtubule from a detached state.

The corresponding detachment rate for state 1 would be:

r(1) rdet(1)=
w1, det

1+eU1, det − Fl1, det
(33)

introducing another three fitting parameters w1, det, U1, det, and l1, det. Since
we expect that the binding of the KD-state is a bit more stiff than that of
the DP-state, U1, det should be larger than U6, det on the one hand and l1, det

should be smaller than l6, det on the other hand.
In Figs. 5 and 6 the results of this approach are given, where we have

used values for the fitting parameters as stated in Table III (fit 1 and 2 are
compatible here). With the fitting of the additional parameters, the proces-
sivity behavior is well reproduced.

5. CONCLUSIONS

Our purpose was not to find a simple model with parameters that
would fit sufficiently well the experimental data concerning kinesin. An
essential part of our results is in the very construction of the Markov
model, rather independent of the experimental processivity data but inspired
by and based on the mechanochemical structure of the motor (for the
Markov states) and on the observed transitions (for the rates). We have
then found a posteriori that the velocity and stalling data and their depen-
dence on load and ATP concentrated are well reproduced. Furthermore,
we have connected the motor functioning with thermodynamics and have
investigated how the entropy production and the efficiency depend on load
and ATP concentration. The theory of fluctuations of the entropy produc-
tion and the associated randomness in the motion has not yet been explored
here.
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APPENDIX

To obtain a Markov chain on a smaller state space from whose sta-
tionary state we can however reconstruct the original stationary solution,
the following result is helpful.

We write W={1, 2,..., n} and we suppose that all states are connected
via some path of strictly positive transition rates r(i, j) > 0 (we can of
course always put r(i, i)=0).

The stationary probability distribution can be written as:

r(1)=
;n

j=2 r̃(j) r(j, 1)
;n

j=2 [r̃(j) r(j, 1)+r(1, j)]
; r(j)=r̃(j)(1 − r(1)), j ] 1

(34)

with r̃ a probability measure on {2,..., n} which is the solution of

C
n

j=2
[r̃(i) r̃(i, j) − r̃(j) r̃(j, i)]=0, -i ] 1 (35)

where

r̃(i, j) — C 5r(i, j)+
r(i, 1) r(1, j)

; l r(1, l)
6 , i, j ¥ {2,..., n}. (36)

where C is an arbitrary positive constant (a rescaling of time).
Note that we can again set r̃(i, i)=0 and

C
n

j=2
r̃(i, j)=C C

n

j=1
r(i, j), i ¥ W0{1} (37)

These new rates r̃(i, j) are the rates for a reduced Markov chain on the
reduced state space W0{1}.

Proof. The stationarity of r(1) can be rewritten from Eq. (9) as

r(1) 5(1 − r(1)) C
j

r(1, j)+C
j

r(j) r(j, 1)6=C
j

r(j) r(j, 1) (38)

from which we get r(1) as function of the r̃(j)’s as in (34); The r̃(j)’s are a
rescaling of the original r(j)’s, and they sum up to one. They are also the
stationary solution of a new Markov chain, because we can rewrite (9) for
the other states (i ] 1):

r(i) 5 C
j ] 1

r(i, j)+r(i, 1)6= C
j ] 1

r(j) r(j, i)+r(1) r(1, i) (39)
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Upon dividing this by 1 − r(1) and by substituting (34), we find the
Eq. (35). L

Another type of reduction of states is useful when there is a state
which is connected to only one other state. We consider then the Markov
chain with r(1, i)=0=r(i, 1) unless i=2. Let again r denote the unique
stationary probability distribution and define r̂(i)=r(i) for i=3,..., n and
r̂(2)=r(1)+r(2) for a new probability measure on W0{1}. Then, r̂ is
stationary for the (new) Markov chain with transition rates r̂(i, j)=r(i, j)
if i ] 2 and r̂(2, j)=r(2, j)[1+r(2, 1)/r(1, 2)]−1.

The proof of this last reduction starts by observing that in the original
Markov chain J12=0, i.e., r(1) r(1, 2)=r(2, 1) r(2), which just expresses
the stationarity for i=1 in (9). The rest is just explicitly checking the sta-
tionarity of r̂ under the transition rates r̂(i, j) while using that r(i, 1)=
r(1, i)=0 for i ] 2 and that r̂(2, j) r̂(2)=r(2) r(2, j).
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